Tutorial:

Functional Mockup Interface 2.0 and
HiL Applications

Torsten Blochwitz
R&D Manager, ITI Dresden

FMI MAP Leader



FMI at Automotive OEMs and Suppliers

Automotive Use Cases, Workflows, HIL

FMI Applications at Daimler

Benefits of using Standards for Model Exchange
FMI in Hardeware-in-the-Loop (HiL) applications

FMI in CarMaker HiL

FMI in LabCar HiL

FMI Support in the dSPACE Toolchain

FMI in Concurrent Real-Time HiL

FMI in dSPACE DS1006 HiL

© 2014 FMI Modelica Association Project | www.fmi-standard.org

S. Schneider (BMW)
B. Relovsky (Daimler)
M. Kuebler (ZF)

R. Pfeffer (IPG)
C. Mitrohin (ETAS)
A. Pillekeit (dSPACE)

R. Praveenkumar
(Concurrent RT)

J. Akesson (Modelon)



FMI 2.0 Features

New Features of FMI 2.0 and beyond T. Blochwitz (ITI)
Connecting tightly coupled FMUs M. Otter (DLR)
Modelica FMI Test Library M. Otter (DLR)
Co-Simulation with variable step-size H. Elmqgvist (Dassault
Systemes)

FMI 2.0 Demonstrations

FMU Compliance Checker J. Akesson (Modelon)
FMUs from Dymola and SimulationX A. Pillekeit (dSPACE),
on dSPACE SCALEXIO HiL et.al.

FMUs from Dymola and AUTOSAR Builder H. EImgvist (Dassault
on Concurrent RT platform Systemes), et.al.

© 2014 FMI Modelica Association Project | www.fmi-standard.org



Introduction

Design and

Concept Optimization

Operation

Requirements Component = Operator
Executable » FEM, CFD Training
Specification = MBS

Modelica = Monitoring
Architecture VHDL-AMS

Signal based
UML

System

= MBS

= Modelica

» VHDL-AMS
= Signal hased




FMI — Main Design Idea

= FMI for Model Exchange

FMU
(O—
Tool EMI -
Solver
FMU
-(O-
it | Model |
=  FMI for Co-Simulation
FMU
O e sove
FMI
Tool
FMU
O e | sover
FMI
Master Slaves



FMI Use Cases

Standalone:
Executable FMU
Slave
Master _C Model Solver
FMI
Process
Tool Based:
Executable FMU Simulation tool
FMI _.O}_ Slave
Master _C : Wrapper Model Solver
FMI
Process 1 Process 2
Distributed:
Executable Executable/Service FMU Simulation tool
e -HHODH Application e FMI —O)— Slave
+CO-+H  Server O Wrapper Model Solver
FMI
Computerl Computer2

© 2014 FMI Modelica Association Project | www.fmi-standard.org




FMI — Main Design Idea

= A component which implements the interface is called a
Functional Mockup Unit (FMU)

= Separation of:
= Description of interface data (XML file)

= Functionality (APl in C)

= An FMU is a zipped file (*.fmu) containing: 4 | Examplefmu
4 binaries
= modelDescription.xml linux32
_ _ _ linuzbd
= |mplementation in source and/or binary form wird?
wingd

= Additional data and functionality e

FEsQUrces

= One FMU can contain implementations of both interfaces

SOUrCes

© 2014 FMI Modelica Association Project | www.fmi-standard.org



FMI for Model Exchange
Signals

t,.p.inital values (a subset of v(z,))

Enclosing Model y

t time

discrete states (constant between events)
parameters of type Real, Integer, Boolean, String
inputs of type Real, Integer, Boolean, String

all exposed variables

continuous states (continuous between events)
outputs of type Real, Integer, Boolean, String
event indicators

External Model (FMU Instance)

N< X < cT 3

A A

© 2014 FMI Modelica Association Project | www.fmi-standard.org



FMI for Co-Simulation

Signals
A
to, p, Vo | \'
Co-Simulation Master ‘
— Solver
Co-Simulation Slave (FMU Instance)
Additional:

=  Status information

= Derivatives of inputs, outputs w.r.t. time for support of higher order
approximation between communication steps



FMI for Model Exchange and Co-Simulation

Sample Code

= Model Exchange:
(One model evaluation)

Co-Simulation:
(One communication step)

/* Set inputs*/
fmiSetReal (m, 1d u, u, nu);
fmiSetTime (m, tC);

/* Set inputs*/
fmiSetReal (s, 1d u, u, nu);
/* Do computation*/

fmiSetContinuousStates (m, x, nx); fmiDoStep (s, tC, hC, fmiTrue);
/* Get results */ /* Get results */
fmiGetDerivatives (m, derx, nx); fmiGetReal (s, 1d vy, y, ny);
fmiGetEventIndicators (m, z, nz);
fmiGetReal (m, id y, y, ny);

hC
A S 3 >
1;Start te ti,me Cstare = Ceat time



